Game-changing engine technology

Utilising the power of waste heat to improve air quality and cut CO2 emissions, while boosting fuel efficiency

Learn MoreEnquire Now

We are Dolphin N2

We are:

A growing company formed to deliver game-changing engine technology to market, acquired by FPT Industrial in 2019. The ThermoPower® and CryoPower® engines are ideally suited for application in heavy-duty trucks, agricultural vehicles and stationary distributed power generation systems.

Our aim:

To get the first ultra-efficient vehicles harnessing our waste heat technology on the road in the next five years, with a rapid pathway to net zero using hydrogen and other sustainable fuels.

Our technology:

Is proven & patented with full system demonstration, subsequent pilot applications and industrialization underway.

Professor Morgan was filmed alongside the Titan Cryogenic rig built collaboratively with The University of Brighton & Ricardo Plc. Professor Morgan was able to explore & explain the CryoPower technology & how this system can be a game changer in the global emissions battle.

ThermoPower®

The big breakthrough for diesel emissions and efficiency

We estimate that in a heavy duty truck application ThermoPower® would provide potential operator savings of approximately £9000 ($12,500) per year for each vehicle

CryoPower® and ThermoPower® are recuperated split cycle engines. The revolutionary step is to separate the “cold” and “hot” parts of the traditional internal combustion engine so that each can be separately insulated.

The cold compression cylinder delivers air to the hot combustion cylinder via a heat exchanger or “recuperator” that transfers energy from the hot cylinder exhaust, considered waste in a conventional engine, to the intake air.

Further efficiency improvement can be achieved with the CryoPower® version by injecting a small amount of liquid nitrogen in the cold cylinder which means that compression is done isothermally.
The split cycle technologies developed by Dolphin N2 redefine the process of fuel combustion to the extent that it has been described by leading academics as a lower temperature oxidation process akin to that in a fuel cell rather than a combustion process that occurs at higher temperatures.

The result is that the negative by products of combustion: – NOx and particulates are avoided at source meaning that this system can achieve at least the California Air Resources Board SULEV level using known “SCR” (Urea-based) after-treatment.

The combustion process is compatible with current liquid fuels meaning it can use the current fuel infrastructure but is also compatible for future synthetic fuels, liquid or gaseous derived from carbon capture and ‘wrong time’ renewable energy.

News

Agriculture

Future fuels for farm vehicles. How methane and hydrogen are playing their part.

The future of farming and agriculture is changing. With a global need for reductions in GHGs being addressed internationally, every single sector must have a…
Agriculture

Cenex LCV/CAM 2023 showcases decarbonisation technology for the transport sector.

The Cenex Low Carbon Vehicle (LCV) and Connected Automated Mobility (CAM) event is a pivotal event for the transport sector. LCV brings together some of…
Environment & Climate

Green ammonia could significantly cut GHG’s and pollution emitted by diesel powered marine vessels.

Global shipping produces approximately 3% of global CO2 emissions. Container ships have predominantly relied on ‘bunker fuel’ as their energy dense fuel of choice. However,…