Game-changing engine technology

Utilising the power of waste heat to improve air quality and cut CO2 emissions, while boosting fuel efficiency

Learn MoreEnquire Now

We are Dolphin N2

We are:

A growing company formed to deliver game-changing engine technology to market, acquired by FPT Industrial in 2019. The ThermoPower® and CryoPower® engines are ideally suited for application in heavy-duty trucks, agricultural vehicles and stationary distributed power generation systems.

Our aim:

To get the first ultra-efficient vehicles harnessing our waste heat technology on the road in the next five years, with a rapid pathway to net zero using hydrogen and other sustainable fuels.

Our technology:

Is proven & patented with full system demonstration, subsequent pilot applications and industrialization underway.

Professor Morgan was filmed alongside the Titan Cryogenic rig built collaboratively with The University of Brighton & Ricardo Plc. Professor Morgan was able to explore & explain the CryoPower technology & how this system can be a game changer in the global emissions battle.

ThermoPower®

The big breakthrough for diesel emissions and efficiency

We estimate that in a heavy duty truck application ThermoPower® would provide potential operator savings of approximately £9000 ($12,500) per year for each vehicle

CryoPower® and ThermoPower® are recuperated split cycle engines. The revolutionary step is to separate the “cold” and “hot” parts of the traditional internal combustion engine so that each can be separately insulated.

The cold compression cylinder delivers air to the hot combustion cylinder via a heat exchanger or “recuperator” that transfers energy from the hot cylinder exhaust, considered waste in a conventional engine, to the intake air.

Further efficiency improvement can be achieved with the CryoPower® version by injecting a small amount of liquid nitrogen in the cold cylinder which means that compression is done isothermally.
The split cycle technologies developed by Dolphin N2 redefine the process of fuel combustion to the extent that it has been described by leading academics as a lower temperature oxidation process akin to that in a fuel cell rather than a combustion process that occurs at higher temperatures.

The result is that the negative by products of combustion: – NOx and particulates are avoided at source meaning that this system can achieve at least the California Air Resources Board SULEV level using known “SCR” (Urea-based) after-treatment.

The combustion process is compatible with current liquid fuels meaning it can use the current fuel infrastructure but is also compatible for future synthetic fuels, liquid or gaseous derived from carbon capture and ‘wrong time’ renewable energy.

News

Agriculture

Heavy-duty and off-highway look to Hydrogen and Methane to support decarbonisation.

Heavy-duty, off-highway and agriculture are three of the most challenging sectors to decarbonise. However, research and development in this sector continues to gain pace. Some…
Environment & Climate

Hydrogen UK, Hydrogen Industry Leaders (HIL) and the Future Propulsion Conference (FPC) events to put the spotlight on Hydrogen in 2024.

2024 is shaping up to be the year in which Hydrogen comes into its own. Recognised as a key player in globally reducing emissions and…
Environment & Climate

Hydrogen given Government funding boost and COP28 recognition.

In the wake of COP28 and the agreements made by the international communities, we are now entering ’the end of the fossil fuel era’. The…